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Biomarkers of Gaucher disease (GD) assisting diagnosis  

Recommendation: chitotriosidase activity, PARC/CCL18 or glucosylsphingosine (GlcSph) 

concentrations in serum and/or plasma can be used as a first line test when the diagnosis of Gaucher 

disease (GD) is suspected.  

Assaying of chitotriosidase activity will not be informative in some individuals, largely due to the 

presence in homozygosity of a 24 bp duplication in the CHIT1 gene, a trait that is quite frequent in 

some ethnic groups. If it is the only assessed biomarker and the result is normal, the presence of 24 

bp duplication in the CHIT1 should be excluded. 

However, a diagnosis of GD needs to be established by the assay of acid β-glucosidase activity (in 

homogenates of peripheral blood leukocytes of cultured fibroblasts), preferably supported by 

molecular analysis of the GBA1 gene, or by the identification of biallelic pathogenetic variants in the 

GBA1 gene  

 The use of dried blood spots (DBS) in the diagnosis of lysosomal storage disorders has become 

increasingly popular mainly due to its convenience (see below). Monocentric studies reported a 

good sensitivity of DBS GlcSph assessment in identifying GD patients. However, the outcome of 

extensive studies documenting specificity, stability and the impact of sample storage and shipping 

conditions on sensitivity of this biomarker in DBS is not yet available. 

Level of evidence: II (cohort studies /case series with consistent results/ research articles)  

Grade: B (Recommendation) 

Remarks 

A-Chitotriosidase activity 

 The activity of Chitotriosidase can be assayed in plasma /serum. 

 When the fluorogenic substrate 4-methylumbelliferyl-β-D-N,N′,N″-triacetyl-chitotrioside (4MU-

C3) is used it is important to ensure that the enzyme activity is truly proportional to the amount 

of chitotriosidase protein, the need to standardize the assay across laboratories is urgent and is 

underway through the IWGGD Biomarkers & Materials working group. 

 The fluorogenic substrate 4-methylumbelliferyl-deoxychitobiose (4MU-dC2) allows a more 

convenient, sensitive, and accurate determination of its activity.  

 Although activity well within the range observed in GD can also be detected in other conditions, 

including both lysosomal and non-lysosomal storage diseases, a marked elevation of 

chitotriosidase activity in plasma appears to be characteristic for GD. 
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B- PARC/CCL18   

 The levels of PARC/CCL18 can be measured in either plasma or serum. 

 Concentrations cannot be reliably estimated using SELDI-TOF. 

 Both enzyme-linked immunosorbent assay (ELISA) and dissociation-enhanced lanthanide 

fluoroimmunoassay (DELFIA) can be used for reliable estimation. 

 Increased levels that can overlap those found in GD have been described in patients with other 

conditions including both lysosomal and on lysosomal storage diseases. 

 Although for the diagnosis of GD there is no added value in the concomitant evaluation of both 

plasma chitotriosidase activity and PARC/CCL18 levels, measurement of the PARC/CCL18 levels 

is particularly important for patients with zero chitotriosidase activity due to the presence in 

homozygosity of a 24 bp duplication in the CHIT1 gene.  

C- Glucosylsphingosine (GlcSph; lysoGL1/lysoGb1)   

 The concentration of GlcSph - sometimes termed ‘lysoGL1’ or ‘lysoGb1’ in literature supported 

by different companies -can be measured in either plasma or serum. GlcSph can be quantified 

in previously frozen serum or plasma samples. 

 Different techniques can be used for detection of which LC-MS/MS is presently most sensitive. 

Its levels cannot be reliably estimated using SELDI-TOF. Reliable determination of absolute 

concentrations of GlcSph by mass spectrometry requires use of an appropriate internal 

standard.  

 Markedly increased levels of plasma GlcSph (>100 fold) are characteristic of untreated GD, but 

more modest elevations may be encountered in other disease conditions (e.g. AMRF, PSAP 

deficiency and NPC).  

 The value of the demonstration of elevated GlcSph in DBS is currently being evaluated in the 

diagnosis of GD. Some expert centers have positively reported on the use of DBS to 

demonstrate elevated GlcSph in GD patients. Further confirmation and studies on this, including 

impact of storage and shipment conditions, should be undertaken. 

D- ACE (angiotensin-converting enzyme) 

  Small increases in ACE activity are observed in GD patients. 

 Increased activity is not observed in all GD patients. 

 Increased serum/plasma ACE has been reported in other disorders involving activation of the 

monocyte/macrophage lineage. 

 Several genetic variants in the ACE gene have been described which result in increased ACE 

blood levels. 

 ACE activity can be inhibited by frequently prescribed ACE inhibitors. 
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E-TRAP (tartrate-resistant acid phosphatase) 

 TRAP is not specific to GD. 

 Modest increase is observed. 

 TRAP is unstable in the blood and consequently shows marked analytical variability. 

F- gpNMB (glycoprotein nonmetastatic melanoma protein B) 

 gpNMB is selectively overexpressed by Gaucher cells. 

 Its soluble fragment into plasma that can be conveniently detected by ELISA. 

 Increase has been described in GD and Niemann Pick type C disease and the protein is elevated 

in many other diseases. 

 Limited studies. 

Details: Chitotriosidase the human analogue of chitinases from lower organisms which is massively 

excreted by storage cells 

Sensitivity: In terms of diagnosing GD assaying of plasma chitotriosidase activity is commonly 

employed in many centers as a first line screening test. The activity of chitotriosidase in plasma is 

elevated up to 1000-fold above normal values. In the initial chitotriosidase study, plasma activity was 

found to be elevated on average 641-fold (median control plasma, 20 nmol/mL/h; range, 4-76 

nmol/mL/h; median GD plasma, 12 824 nmol/mL/h; range, 3122-65 349 nmol/mL/h (Hollak et al., 

1994). Several subsequent reports have confirmed these findings (Deegan et al., 2005; Raskovalova et 

al., 2020; Stirnemann et al., 2012; van Dussen et al., 2014).  In general, higher activity is observed in 

type 1 patients than patients with the neurological types 2 and 3. Increased activity has also been 

reported in asymptomatic/ presymptomatic patients identified through the screening of family 

members of diagnosed cases (Dimitriou et al., 2020).  

The interpretation of plasma chitotriosidase levels is complicated by the occurrence of a 24-base pair 

(bp) duplication in the chitotriosidase gene, which prevents the formation of chitotriosidase protein. 

This trait is particularly common in the general population, including GD patients, where one in every 

three individuals is a carrier and about one in every 20 individuals is homozygous for the mutation 

(Boot et al., 1998). Several other mutations have been described which affect the activity of 

chitotriosidase (Arndt et al., 2013; Csongrádi et al., 2021; Grace et al., 2007; Lee et al., 2007; Mavrikiou 

et al., 2016). 

Specificity:  increased plasma chitotriosidase activity is not unique to GD patients. Increased activity is 

also found in many different lysosomal and non-lysosomal diseases such as such as Nieman Pick C 

disease, Acid sphingomyelinase deficiency, Alagille syndrome, hydrops fetalis due to congenital herpes 

virus infection, neonatal systemic candidiasis, sarcoidosis, leprosy, arthritis, multiple sclerosis, 
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thalassemia, chronic obstructive pulmonary disease (COPD), malaria, and atherosclerosis. In general, 

the increases observed are more modest than in the case of GD and although  activity well within the 

range observed in GD can also be detected a marked elevation of chitotriosidase activity in plasma 

appears to be characteristic for GD (Boot et al., 1999, 2010; Boven et al., 2006; Brinkman et al., 2005; 

Guo et al., 1995; Hollak et al., 1994; Iyer et al., 2009; Labadaridis et al., 1998; Michelakakis et al., 2004; 

Vedder et al., 2006; vom Dahl et al., 1999). 

Assaying of Chitotriosisdase activity: The biological material to be used is serum and/or plasma. The 

enzyme in plasma is stable upon storage and multiple freeze thaw cycles, (storage: stable at room 

temperature for 24 hours; storage at -30 after 8 month recovery 95.3-102%, data presented by Aerts 

at GD Biomarker Qualification Workshop, September 2010, FDA Campus). Although the use of DBS in 

diagnosis of lysosomal storage disorders has become increasingly popular mainly due to its 

convenience, at present extensive studies documenting sensitivity and specificity of assaying  

chitotriosidase  activity in this type of biological material are not yet available (Chaves et al., 2011; 

Pacheco & Uribe, 2013; Rodrigues et al., 2009; Saville et al., 2020). The activity of chitotriosidase in 

plasma/serum can be determined using the fluorogenic substrate 4- methylumbelliferyl-β-D-N,N′,N″-

triacetyl-chitotrioside (4MU-C3).However, the assay is complicated by the ability of chitotriosidase to 

transglycosylate as well as hydrolyze this substrate rendering abnormal kinetics (Aguilera et al., 2003). 

It is essential therefore that special care is taken to ensure that the enzyme activity is truly 

proportional to the amount of chitotriosidase protein and the need to standardize the assay across 

laboratories is urgent. Alternatively, a far more convenient, sensitive, and accurate detection can be 

achieved by measuring the activity of chitotriosidase toward the fluorogenic substrate 4-

methylumbelliferyl-deoxychitobiose (4MU-dC2. Chitotriosidase shows normal Michaelis–Menten 

kinetics with this substrate, allowing the use of saturating substrate concentrations. Thus, a more 

accurate and robust assay is now available (Aguilera et al., 2003; Schoonhoven et al., 2007). 

PARC/CCL18: pulmonary and activation-regulated chemokine (PARC, systematic name CCL18), a 

member of the C-C chemokine family which is massively excreted by storage cells 

Sensitivity: a 10- to 50- fold increase in the levels of PARC/CCL18 has been reported in plasma of 

symptomatic GD patients compared to healthy individuals (Boot et al., 2004; Deegan et al., 2005; 

Raskovalova et al., 2020). Increased PARC/CCL18 levels have been reported in the asymptomatic 

identical twin of a patient with severe disease which were however lower than in the symptomatic 

patient. It is stable on storage and multiple freeze thaw cycles. 

Specificity:  Increased levels that can overlap those found in GD have been described in patients with 

a-mannosidosis, Niemann Pick disease type A and B (Brinkman et al., 2005; Deegan et al., 2005). Non-
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lysosomal storage diseases with increased PARC/CCL18 levels include atherosclerosis, rheumatoid 

arthritis, beta-thalassemia, sarcoidosis (Boot et al., 2010; Dimitriou et al., 2005; Reape et al., 1999; 

Struyf et al., 2003). So far, no genetic variations that could impact on the levels of PARC/CCL18 have 

been described. 

Measurement of the levels of PARC/CCL18: The biological material to be used is serum and/or plasma. 

PARC/CCL18 is stable on storage and multiple freeze thaw cycles (storage: stable at room temperature 

for 48 hours ; storage at-30; 8 month recovery 107-109%, data presented by Aerts et al. at GD 

Biomarker Qualification Workshop, September 2010, FDA Campus).  Its levels cannot be reliably 

estimated using SELDI-TOF but enzyme-linked immunosorbent assay (ELISA) and dissociation-

enhanced lanthanide fluoroimmunoassay (DELFIA) can be used for reliable estimation (Boot et al., 

2004; Raskovalova et al., 2020; van Breemen et al., 2006). 

Glucosylsphingosine (a.k.a. lysoGL1, lysoGb1):   

Sensitivity: an average 180 - fold increase in the levels of GlcSph has been reported in plasma of 

symptomatic type 1 GD patients compared to healthy individuals (Dekker et al., 2011). A similar 

abnormality is noted in in mice and zebrafish with deficient glucocerebrosidase (Dahl et al., 2021; 

Keatinge et al., 2015; Lelieveld et al., 2019). This characteristic abnormality has been confirmed by 

numerous laboratories worldwide (e.g. Murugesan et al., 2016; Rolfs et al., 2013; recently reviewed 

in Revel-Vilk et al., 2020; van Eijk et al., 2020).  GlcSph has been reported to be also increased in DBS 

of GD patients (Dinur et al., 2022; Polo et al., 2019; Saville et al., 2020).  

Specificity:  More modestly increased levels of plasma GlcSph have also been noted in patients 

suffering from Action Myoclonus Renal Failure syndrome with a defective LIMP-2 (Gaspar et al., 2014), 

patients with SapC deficiency (Mota et al, 2016) and some patients with Niemann Pick disease type C 

(Ferraz et al., 2016).  

ACE (angiotensin-converting enzyme): a 2 – 10 fold increase in ACE has been described in 

serum/plasma of GD patients patients apparently originating from storage cells (Aerts & Hollak, 1997; 

Cabrera-Salazar et al., 2004; Danilov et al., 2018; Deegan et al., 2005; Lieberman & Beutler, 1976; 

Silverstein et al., 1980; Šumarac et al., 2011; van der Lienden et al., 2019). Increased serum/plasma 

ACE has been reported in other disorders involving activation of the monocyte/macrophage lineage. 

Sarcoidosis is the most frequent and the better studied of these diseases (Beneteau-Burnat & Baudin, 

1991). Increased activity is not observed in all GD patients (Silverstein et al., 1980) up to 5-fold 

variation in blood ACE across a population can be observed and several mutations/polymorphisms in 

the ACE gene have been described which result in increased ACE blood levels (Danilov et al., 2021; 
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Nesterovitch et al., 2009). ACE activity can be repressed by frequently prescribed ACE inhibitors 

(Struthers et al., 1999).  

TRAP (tartrate-resistant acid phosphatase): TRAP was the first biomarker to be assayed in the 

diagnosis of GD (Tuchman et al., 1956). TRAP is not specific to GD and the observed increase is modest. 

It is unstable in the blood and shows marked analytical variability (Aerts & Hollak, 1997; Deegan et al., 

2005). In interpreting TRAP serum levels its increased levels in children compared to adults should be 

taken into consideration together with its thermoinstability (Lam et al., 1978). 

gpNMB (glycoprotein nonmetastatic melanoma protein B) has been identified by proteomics analysis 

of laser dissected Gaucher cells from GD spleens (Kramer et al., 2016; van der Lienden et al., 2019). It 

is selectively overexpressed by Gaucher cells that release a soluble fragment into plasma that can be 

conveniently detected by ELISA. The soluble fragment of gpNMB is found to be elevated over 50-fold 

in plasma of patients with type 1 GD (Kramer et al., 2016)and was also found to be elevated in human 

NPC plasma samples (van der Lienden et al., 2019). A recent investigation confirms the value of soluble 

gpNMB as plasma marker of Gaucher cells and substantiates its diagnostic potential (Murugesan et 

al., 2018). However further studies are needed before its role as a diagnostic biomarker is established. 

Enzyme activity  

Recommendations: acid β-glucosidase (BGLU) activity could be measured in DBS samples as a first-

line test in clinical suspected individuals. However, Gaucher diagnosis should never be relied on DBS 

enzyme activity measurement and samples with activity below cut-off values as well as normal 

activity but a highly suspicious clinical picture require confirmation by measuring BGLU activity in 

gold standard samples: homogenates of leukocytes or fibroblasts. GD diagnosis is made by 

demonstration of deficient (below 15% of mean normal activity) BGLU enzyme activity in these cell’s 

homogenates 

Level of evidence: II, III and IV (Well-designed cohort, case-control study, case reports)  

Grade: B (Recommendation) 

Each laboratory should establish its own Quality Management (QM) system, if possible according to 

ISO15189 international standards and participate in both internal and external quality assessments. 

Level of evidence: V (Review, expert opinion)  

Grade: D (Option) 

Remarks 
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 BGLU activity could be measured using artificial substrate with fluorimetric methods, tandem 

mass spectrometry or by digital microfluidics platform. 

 Fluorometric method is used for the gold standard assay in leukocytes/fibroblasts. 

 Tandem mass spectrometry or by digital microfluidics platforms are generally used for DBS 

samples in screening studies.  

 Residual enzyme activity does not correlate with disease severity. 

 Enzyme test is not suitable for diagnosis of heterozygotes of GD nor of saposin C deficiency. 

Details: The BGLU activity could be measured in different samples such as blood dried on 

standardized filter paper, leukocytes, fibroblasts and in case of prenatal diagnosis in chorionic villi 

sampling (CVS) or cultured amniocytes (Bodamer & Hung, 2010). BGLU could be measured in DBS 

samples as a first-line laboratory test. Pre-analytical requirements are critical for reliable BGLU results 

from DBS samples. DBS is obtained by application of 50-75 μL drops of blood obtained by venipuncture 

into heparin tubes and spotted on the Whatman®903 or S&S903 filter paper. Another option is 

application of the same amount of blood after fingerprick on filter paper collection device onto printed 

circles (Gasparotto et al., 2009; Hannon, 2013). DBS should be dried for 4 h at room temperature 

avoiding direct illumination, and then packed in a sealed plastic bag with desiccant, and stored at 4 °C 

until analysis (Adam et al., 2011). Exposure of DBS to both heat and humidity can destroy enzyme 

functions rapidly. Moreover, an incomplete mixed blood before spotting can result in significant 

variation on enzyme activity (Elbin et al., 2011).  

The use of DBS as first line laboratory test offers many advantages over leukocytes or fibroblasts 

samples including easy collection methodologies, need of a small amount of blood, and simpler 

transportation as samples can be shipped via regular mail at room temperature. If the DBS sample is 

treated appropriately, the BGLU remain stable at least for 21 days (Ceci et al., 2011; Chamoles et al., 

2002; Reuser et al., 2011). DBS has limitations for measurement BGLU activity. The volume of blood 

applied, hematocrit, recent blood transfusions and other preanalytical steps such as drying time, 

homogeneity and extraction of the analyte influences the quality of the DBS sample (Moat et al., 

2020). To ensure integrity of BGLU activity and to avoid false positive results, another lysosomal 

enzyme should be measured as a control enzyme with approximately same stability at room 

temperature. The value of the control (reference) sample should generally lie between the mean +/ - 

2 standard deviation (Lukacs et al., 2003).   
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Different studies have shown good sensitivity and specificity, above 95%. However, enzyme testing in 

DBS has a low positive predictive value of< 45% in average (Bender et al., 2020; Burlina et al., 2019; 

Elliott et al., 2016; Huang et al., 2020; Kang et al., 2017; Sanders et al., 2020; Stroppiano et al., 2014; 

Tortorelli et al., 2016; Wasserstein et al., 2019).  

Patient leukocytes or cultured skin fibroblast homogenates are the gold standard for measurement 

the BGLU activity (Leukocytes as the BGLU source are obtained by separation from approximately 5-

10 milliliters of blood, drawn from patient in K2EDTA or heparin tube. Moreover, skin fibroblasts 

should be used when patients have received blood transfusions or when discordant results are 

obtained with white blood cells. The shipment of blood samples to the reference laboratory should 

be carried out at 4°C (Kolodny & Mumford, 1976). The isolation of leukocytes from the whole blood 

should be completed within 24 h after blood collection using dextran sedimentation or the ammonium 

chloride lysis method (Karatas et al., 2020; Peters et al., 1975; Roos & Loos, 1970; Skoog & Beck, 1956). 

Isolated leukocytes pellet could be stored at- 20°C until enzyme measurement for at least 20 days 

(Karatas et al., 2020). 

Cultured fibroblasts homogenates require an invasive skin biopsy and a primary cell culture of skin 

fibroblasts (avoiding the risk of contamination), and to wait for the growing of fibroblasts to obtain a 

confluent cell monolayer The shipment of cultured fibroblasts should be at room temperature in a 

tube, dish or sealed flask (T25 or T75) filled with culture media (Coelho & Giugliani, 2000). There are 

some potential interfering factors: excessive transport time, lack of viable cells, bacterial or 

mycoplasma contamination, exposure of the specimen to temperature extremes (freezing or >30°C).  

The use of gold standard samples requires a homogenisation step with a metal tip sonicator, and total 

protein measurement (Bradford, 1976; Kolodny & Mumford, 1976). 

BGLU activity could be measured using fluorimetric methods, tandem mass spectrometry or by digital 

microfluidics platforms. Fluorimetric methods are based on artificial substrate 4-methylumbelliferyl-

β-D-glucopyranoside (4-MUG). They are mostly performed in microtiter plates (Chiao et al., 1980; 

Olivova et al., 2008; Wenger et al., 1978). The sample is put into a reaction mixture containing low pH, 

sodium deoxytaurocholate, and the fluorogenic substrate 4-Methylumbelliferyl β-D-glucopyranoside 

(4-MUG). Sodium deoxytaurocholate is added in order to inhibit the non-lysosomal isoenzyme BGLU 

activity (Chamoles et al., 2002; Daniels et al., 1981; Magalhães et al., 1984; Michelin et al., 2004; 

Shapira et al., 1989). Fluorometric enzyme assays for BGLU onto digital microfluidic platform show 

potential for a simple, rapid and high-throughput selective screening of BGLU activity (Camargo Neto 

et al., 2018; Hopkins et al., 2015; Sista, Wang, Wu, Graham, Eckhardt, Bali, et al., 2013; Sista, Wang, 

Wu, Graham, Eckhardt, Winger, et al., 2013). Beside digital microfluidic fluorimetry, there are other 
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available compact digital microfluidic platforms (e.g. electro-wetting based digital microfluidics) 

(Millington et al., 2018) 

Tandem mass spectrometry enzyme assays with (LC-MS/MS) or without (MS/MS) liquid 

chromatography are based on a non-fluorometric synthetic substrates (Gelb et al., 2006; Li et al., 2004; 

Zhang et al., 2008). This approach may be particularly suitable for high-throughput analyses with a 

large number of individuals at-risk and/or for future newborn screening for GD (Elliott et al., 2016; 

Orsini et al., 2012; Wolf et al., 2018) All three technologies (approaches) are suitable for selective 

screening BGLU activity (Sanders et al., 2020) . 

Enzyme determinations in DBS samples are useful screening tests in clinically suspected individuals. 

Samples with BGLU activity below cut-off values require confirmation by measuring BGLU activity in 

gold standard samples: homogenates of leukocytes or fibroblasts (Ceci et al., 2011; Wenger et al., 

1978). Whenever subjects present suggestive GD symptoms they must be reassessed even in the 

presence of normal BGLU from DBS testing (Stroppiano et al., 2014). 

 An enzyme activity result of less than 15% of normal activity in homogenates of leukocytes or 

fibroblasts is diagnostic of GD (Stirnemann et al., 2017). Residual enzyme activity does not correlate 

with disease severity. Enzyme testing is not suitable for identification of carriers of GD nor of saposin 

C deficiency (Baris et al., 2014; Fateen & Abdallah, 2019; Michelin et al., 2004). Heterozygotes may 

have half-normal enzyme activity, but overlapping with activity levels of healthy controls, rendering 

enzymatic testing for carrier status unreliable (Butcher et al., 1989; Essabar et al., 2015; Mistry & 

Germain, 2006)  

To ensure the quality of BGLU testing performance, each laboratory should establish its own Quality 

Management (QM) system according to ISO15189 and participate in both internal and external quality 

assessments. The internal audit program monitors operations throughout the testing process and the 

quality system. For quality control purposes, it is necessary to include an appropriate blank and at 

least one affected control and one normal control sample for each run of enzyme assays. All assays 

should be performed in duplicate. The cut-off range, normal range and disease range should be 

established by the laboratory based on its own analysis (Blau et al., 2008). The inter-laboratory 

variance of numerical enzyme activity could be large (Martins et al., 2009). Reproducibility was 

demonstrated by intra- (n = 6) and inter-assay (n = 10) results using threshold of %CV <15.Therefore, 

quality assurance and improvement in diagnostic proficiency have become essential in this area 

(Verma et al., 2015). The enzyme assay is made in house by each lab based on the original published 

methods. It implies differences in units (pmol/h/disk, μmol/l/h, μmol/mg/h), disease cut-off; limit of 

detection (LOD) and limit of quantitation (LOQ). For this reason, laboratory reports from reference 
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labs should include an interpretation of the result that reflects the conclusion of the result as normal 

or deficient, possible limitations of the test, and recommendations for additional testing if applicable  

The European Research Network for Evaluation and Improvement of Screening, Diagnosis, and 

Treatment of Inherited Disorders of Metabolism (ERNDIM) serves as an external proficiency testing 

program for clinical diagnostic laboratories, providing lyophilized fibroblasts for eight LSD enzymes 

(http://cms.erndimqa.nl/Home/Lysosomal-Enzymes.aspx). For laboratories testing lysosomal 

enzymes on DBS, the Newborn Screening Quality Assurance Program (NSQAP) at Centers for Disease 

Control and Prevention (CDC) provides QC materials, proficiency testing (PT) services, and technical 

support in collaboration with the NSTRI at CDC (Fowler et al., 2008; Yu et al., 2013). 

Genetic testing 

Recommendations: Molecular analysis of the GBA1 gene should always be performed when 

biomarker results or phenotype are at odds with the enzymology and is highly recommended in 

subjects with BGLU activity below normal reference intervals in cells to further support/confirm the 

diagnosis of GD and provide genetic counseling. Testing of familial variants and genetic counseling 

should be made available to at risk family members. 

In all cases, molecular testing should be accompanied by a pre and post-test genetic counseling to 

ensure informed choices. 

The high degree of homology between GBA1 and GBAP makes the molecular analysis of GBA 

challenging. Therefore, adequate strategies performed in laboratories with experience in the genetic 

testing of GBA1 gene should be applied to avoid mis-genotyping.  

Level of evidence: II and IV (retrospective cohort studies or case series with consistent results)  

Grade: B (Recommendation) 

Remarks 

 Although genetic testing should be performed to confirm/support biochemical data and to provide 

genetic counseling, it could be done as a primary test (before testing enzymatic activity).  

However, results should be interpreted with caution since GBA1 testing is challenging (see below) 

and variants of unknown significance (VUS) are often identified. Therefore, confirmation of 

diagnosis through the assessment of enzymatic activity in patient’s cells is mandatory. 

 DNA can be extracted from different samples such us DBS, peripheral blood, fibroblasts, tissue 

biopsies. 
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 Genetic testing is the most reliable method to detect heterozygous carriers and it should be made 

available to family members at risk of being carriers.  

 Segregation of alleles by identifying variants in parents, should be determined. 

 Sequencing analysis of GBA1 exons and intron exon boundaries should be performed as primary 

molecular test.  

 Sequencing analysis can be performed using specific long template amplification of the GBA1 gene 

(avoiding the amplification of the pseudogene) followed by Sanger sequencing or NGS specifically 

designed to avoid reads misalignments. This strategy allows detecting point mutations and most 

recombinant alleles but is not suitable to detect large deletions.  

 GBA1 could be included in gene panels analyzed by NGS. This technology allows the detection of 

point mutations, although false positive results have been reported. Therefore, point mutations 

detected by NGS methods should always be confirmed by Sanger sequencing. Standard workflows 

are not suitable for the detection of large deletions or recombinant alleles.  

 The presence of homozygous pathogenetic variants not confirmed in parents, as well as the 

absence of pathogenetic variants (in one or both allele) after sequencing should always be 

questioned and additional investigations should be performed. In particular, multiplex ligation-

probe amplification (MLPA) and mRNA analysis should be done to identify possible undetected 

recombinant/ deleted alleles or deep intronic pathogenetic variants, respectively. 

 Segregation of alleles by identifying variants in parents, should be determined. 

 Variants should be classified following the ACMG criteria and in case of identification of VUS, 

pathogenicity should be assessed by functional analysis. 

 In the absence of pathogenetic variants in GBA1 gene in subjects with a clinical phenotype 

compatible with GD, increased chitotriosidase activity, increased levels of GlcSph and normal or 

low BGLU activity in cells a SAPC deficiency should be suspected and the PSAP gene should be 

analyzed (Christomanou et al., 1989; Dekker et al., 2011; Kang et al., 2018; Rafi et al., 1993; 

Schnabel et al., 1991; Tylki-Szymańska et al., 2007; Vaccaro et al., 2010). 

 In the absence of pathogenetic variants in GBA1 gene in subjects with normal chitotriosidase 

activity, increased plasma levels of GlcSph, normal or low BGLU activity leucocytes and BGLU 

deficiency in fibroblasts a LIMP-2 deficiency should be suspected and SCARB-2 gene should be 

analyzed (Balreira et al., 2008; Dardis et al., 2009; Gaspar et al., 2014; Mota et al., 2016; Quraishi 

et al., 2021; Zeigler et al., 2014). 
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Details: 

According to The Human Gene Mutation Database (HGMD-Professional 2021.1), 540 variants of the 

GBA1 gene have been reported to date, although not all of them are linked to GD. Indeed, 403 of them 

have been associated to GD.  

All kind of variants have been reported: missense and nonsense variants, splice junction variants, 

deletions and insertions of one or more nucleotides and complex alleles (complex rearrangements) 

resulting from gene conversion or gene fusion with the downstream pseudogene GBAP.  However, 

missense and nonsense variants, are the most frequently identified in GD patients worldwide (Hruska 

et al., 2008). 

The frequency distribution of GBA1 variants differs accross ethnic groups. While 4 pathogenetic 

variants (N370S; L444P, c.84-85 insG; IVS+1G>A) account for 90% of alleles within Ashkenazi Jewish, 

they account only for about 50-75% of alleles in non-Jewish populations. In addition, about 10% of 

patients present large deletions/recombinant alleles (Alfonso et al., 2001; Beutler & Gelbart, 1993; 

Bronstein et al., 2014; Cherif et al., 2009; Dimitriou et al., 2020; Duran et al., 2012; Emre et al., 2008; 

Erdos et al., 2007; Feng et al., 2018; Filocamo et al., 2002; Giraldo et al., 2000; Grabowski et al., 2015; 

Hatton et al., 1997; Horowitz et al., 1993; Jeong et al., 2011; Koprivica et al., 2000; Lepe-Balsalobre et 

al., 2020; Mattošová et al., 2015; Miocić et al., 2005; Orenstein et al., 2014; Ortiz-Cabrera et al., 2016; 

Sheth et al., 2019).  

Long template specific PCR amplification of the GBA1 gene (and not the pseudogene) followed by 

Sanger sequencing allows the identification of single base pair variants and most recombinant alleles 

leading to molecular diagnosis of GD about 95-98 % of cases (Alfonso et al., 2001; Dimitriou et al., 

2020; Duran et al., 2012; Emre et al., 2008; Erdos et al., 2007; Feng et al., 2018; Filocamo et al., 2002; 

Jeong et al., 2011; Koprivica et al., 2000; Lepe-Balsalobre et al., 2020; Mattošová et al., 2015; Miocić 

et al., 2005; Ortiz-Cabrera et al., 2016; Sheth et al., 2019); however this method fails to detect large 

deletions (Beutler & Gelbart, 1994; Cozar et al., 2011; Koprivica et al., 2000; Ortiz-Cabrera et al., 2016). 

GBA1 gene can also be analyzed using NGS technologies, both as a single gene or as part of targeted 

gene panels. In all cases, the workflow should be optimized to avoid false positive or negative results 

due to misalignment of reads between the gene and the pseudogene.  

Strategies to specifically analyze the GBA1 as a single gene using NGS technology have been developed 

(den Heijer et al., 2020, 2021; Zampieri et al., 2017). Such NGS strategies allow the identification of 

single base pair variants and recombinant alleles (excluding the Recdelta55) with high specificity and 

sensitivity (den Heijer et al., 2021; Zampieri et al., 2017). Conversely, analysis of the GBA1 gene as part 



14 
 

of gene panels using well designed NGS strategies that consider the presence of the pseudogene, 

allows only the identification of point mutations, while fail to identify both large deletions and 

recombinant alleles due misalignment of reads with the homologous pseudogene (Lee et al., 2021; 

Málaga et al., 2019; Muñoz et al., 2020; Zampieri et al., 2021; Zanetti et al., 2020) . 

However, NGS data analysis is a field in continuous and rapid evolution and new solutions to improve 

sensitivity and specificity are expected to be available in the near future (Spataro et al., 2017).  

Indeed, the use of PacBio long-read Single Molecule Real-Time (SMRT) for GBA deep sequencing has 

recently been developed (Drelichman et al., 2021). However, this technology is still not widely 

available in most genetic laboratories.  

Multiplex ligation-probe amplification (MLPA) kits have been developed for the identification of 

recombinant/deleted GBA alleles. However, commercially available kits do not discriminate between 

L444P mutant and RecNci alleles and do not discriminate between recombinant and deleted alleles 

(Amico et al., 2016; Ortiz-Cabrera et al., 2016; Zampieri et al., 2021). 

Use of DBS samples for diagnosis in external laboratories 

Recommendations: DBS can be used for diagnosis of GD in patients without access to in house testing. 

In these cases, DBS can be sent to external laboratories with expertise in GD. Pre-analytical 

requirements are critical for reliable results. Both BGLU and/or GlcSph can be assessed as a first line 

test in this type of sample. However, results have to be interpreted with caution since, the BGLU 

activity in DBS has a very poor positive predictive value (see enzyme activity section) and although 

recent monocentric studies have shown encouraging results in favour of use of DBS to assess GlcSph, 

a number of points still need to be clarified. In particular, stability over time of the sample (to define 

storage and transport time recommendations), correlation between standard and DBS assays as well 

as specificity and differential diagnosis (see biomarkers and enzyme activity sections) need to be 

tested. 

Therefore, diagnosis should never be relied on these tests only and they should be confirmed by 

demonstration of biallelic pathogenetic variants in the GBA1 gene (see genetic testing section).  

In the absence of biallelic pathogenetic variants, the assessment of BGLU activity in cells is mandatory. 

 

 



15 
 

Final conclusions: 

These guidelines address the laboratory workup for the diagnosis of GD type 1 and are intended to 

facilitate accurate and timely diagnosis regardless of their demography and access to health care. 

Based on the gathered evidences and the recommendations elaborated a diagnostic algorithm has 

been developed as shown in figure 1 (algorithm 1).  

 

The group is aware that not all patients around the world have access to in house testing and they 

have to rely on external laboratories for diagnosis. In this case, dry blood spots can be used although 

results have to be interpreted with caution. An algorithm for diagnosis using DBS is shown in figure 2 

(algorithm 2): 

Genetic counselling

Clinical suspicion

BGLU activity in DBS
A second lysosomal enzyme should 
always be assessed to control the 

quality of the sample

Biomarkers in plasma
Chitotriosidase* and/or CCL18 and/or

GlcSph
No GD

BGLU activity in cells***
(Leukocytes or fibroblasts)

A second lysosomal enzyme should always be 
assessed to control the quality of the sample

lowAt least one 
increased

Normal 

Assess 
• Acid Sphingomyelinase 

deficiency
• Niemann pick type C 

disease
• Acid lipase deficiency 

low

Pathological range 

Confirmed GD 

GBA sequencing

2 pathogenic 
variants

1 pathogenic 
variant

No variants 
or VUS

MLPA/RNA analysis

2 pathogenic 
variants

If chitotriosidase 
increased

Normal Normal**

PSAP sequencing 

If chitotriosidase and 
GlcSph increased 

*The presence of the 24 bp deletion has to be excluded if this is the only biomarker assessed and it results normal.
**Subjects presenting suggestive GD symptoms must be reassessed even in the presence of normal BGLU in DBS
***A biochemical pattern characterized by BGLU activity normal/low in leucocytes but deficient in fibroblasts associated with high 
levels of GlcSph and normal chitotriosidase activity are highly suggestive of Action Myoclonus renal failure Syndrome (AMRF) due to 
LIMP-2 deficiency. This diagnosis can be confirmed by molecular analysis of the SCARB2 gene.
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The interpretation of the test described in this workflow can be challenging and not always straight 

forward.  

Therefore, the group recommends to expert laboratories to interpret the results in the context of the 

clinical picture of the patient and to include in the report a clear interpretation that reflects the 

conclusion of the result, possible limitations of the test, and recommendations for additional testing 

if applicable.  

Future challenges 

1, A standardization of assays of various plasma biomarkers is recommendable. A first step in this 

direction is undertaken by the IWGGD working group Biomarkers & Materials. 

2, The use of DBS to assess biomarkers (e.g. GlcSph) should be confirmed by multiple centers with 

special care to the influence of storage and shipment conditions. 

3, The potential application of plasma biomarkers to monitor disease progression and efficacy of 

therapeutic intervention warrants attention, in consultation with other IWGGD working groups. 

Clinical suspicion

BGLU activity (A second lysosomal 
enzyme should always be 

assessed to control the quality of 
the sample)

GlcSph

DBS

Normal* 

NO GD

BGLU low and/or
GlcSph High

Confirmed GD 

GBA sequencing 

2 pathogenic 
variants

1 pathogenic 
variant

No variants 
or VUS 

MLPA/RNA analysis

2 pathogenetic 
variants

BGLU activity in cells
(Leukocytes or fibroblasts)

Go to algorithm 1 

*Subjects presenting suggestive GD symptoms must be reassessed even in the presence of normal BGLU in DBS

Genetic counselling
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4, Collection of more information on plasma biomarkers in other conditions in which a (partial) 

deficiency of GCase activity occurs: Niemann Pick type C, Action Myoclonus Renal Failure Syndrome, 

Saposin C deficiency. 

5, Identification of biomarkers able to predict the possible neurological involvement in newly 

identified patients  

6. Development of new methods for accurate and cost/effective analysis genetic testing of GBA 
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